Quantitative Evaluation of Nanosecond Pulsed Laser-Induced Photomodification of Plasmonic Gold Nanoparticles

纳秒脉冲激光诱导等离子体金纳米粒子光改性的定量评估

阅读:7
作者:Andrew M Fales, William C Vogt, T Joshua Pfefer, Ilko K Ilev

Abstract

The rapid growth of gold nanoparticle applications in laser therapeutics and diagnostics has brought about the need for establishing innovative standardized test methods for evaluation of safety and performance of these technologies and related medical products. Furthermore, given the incomplete and inconsistent data on nanoparticle photomodification thresholds provided in the literature, further elucidation of processes that impact the safety and effectiveness of laser-nanoparticle combination products is warranted. Therefore, we present a proof-of-concept study on an analytical experimental test methodology including three approaches (transmission electron microscopy, dynamic light scattering, and spectrophotometry) for experimental evaluation of damage thresholds in nanosecond pulsed laser-irradiated gold nanospheres, and compared our results with a theoretical model and prior studies. This thorough evaluation of damage threshold was performed based on irradiation with a 532 nm nanosecond-pulsed laser over a range of nanoparticle diameters from 20 to 100 nm. Experimentally determined damage thresholds were compared to a theoretical heat transfer model of pulsed laser-irradiated nanoparticles and found to be in reasonably good agreement, although some significant discrepancies with prior experimental studies were found. This study and resultant dataset represent an important foundation for developing a standardized test methodology for determination of laser-induced nanoparticle damage thresholds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。