Effect of Triblock Copolymer on Carbon-Based Boron Nitride Whiskers for Efficient CO2 Adsorption

三嵌段共聚物对碳基氮化硼晶须高效吸附 CO2 的影响

阅读:5
作者:Urooj Kamran, Kyong Yop Rhee, Soo-Jin Park

Abstract

Herein, we investigated novel carbon-containing P123 copolymer-activated boron nitride whiskers (P123-CBNW) fabricated via a structure directing approach followed by a single-step heat treatment under N2. The resulting materials were found to be highly micro- and mesoporous. The influence of the activating agent (P123 copolymer) on the CO2 adsorption efficiency was determined. The prepared samples possessed high specific surface areas (594-1732 m2/g) and micropore volumes (0.258-0.672 cm3/g). The maximum CO2 uptakes of the prepared adsorbents were in the range 136-308 mg/g (3.09-7.01 mmol/g) at 273 K and 1 bar and 97-114 mg/g (2.22-4.62 mmol/g) in the following order: CBNW < P123-CBNW3 < P123-CBNW2 < P123-CBNW1 < P123-CBNW0.5. The isosteric heat of adsorption values (∆Qst) were found to be 33.7-43.7 kJ/mol, demonstrating the physisorption nature of the CO2 adsorption. Extensive analysis revealed that the presence of carbon, the high specific surface area, the high microporosity, and the chemical structural defects within the adsorbents are responsible for raising the CO2 adsorption ability and the selectivity over N2 gas. The fabricated adsorbents show excellent regeneration ability after several repeated adsorption cycles, making the prepared adsorbents promising candidates for gas storage applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。