Effects of Dietary Calcium Propionate Supplementation on Hypothalamic Neuropeptide Messenger RNA Expression and Growth Performance in Finishing Rambouillet Lambs

日粮中添加丙酸钙对育肥朗布依埃羔羊下丘脑神经肽信使 RNA 表达和生长性能的影响

阅读:5
作者:Oswaldo Cifuentes-Lopez, Héctor A Lee-Rangel, German D Mendoza, Pablo Delgado-Sanchez, Luz Guerrero-Gonzalez, Alfonso Chay-Canul, Juan Manuel Pinos-Rodriguez, Rogelio Flores-Ramírez, José Alejandro Roque-Jiménez, Alejandro E Relling

Abstract

The objective of this experiment was to evaluate the effects of feeding different levels concentrations of dietary calcium propionate (CaPr) on lambs' growth performance; ruminal fermentation parameters; glucose-insulin concentration; and hypothalamic mRNA expression for neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC). Thirty-two individually fed lambs were randomly assigned to four treatments: (1) control diet (0 g/kg of CaPr), (2) low CaPr, (30 g/kg dry matter (DM)), (3) medium CaPr, (35 g/kg DM), and (4) high CaPr (40 g/kg DM). After 42 days of feeding, lambs were slaughtered for collecting samples of the hypothalamus. Data were analyzed as a complete randomized design, and means were separated using linear and quadratic polynomial contrast. Growth performance was not affected (p ≥ 0.11) by dietary CaPr inclusion. The ruminal concentration of total volatile fatty acids (VFA) increased linearly (p = 0.04) as dietary CaPr increased. Likewise, a linear increase in plasma insulin concentration (p = 0.03) as dietary CaPr concentration increased. The relative mRNA expression of NPY exhibited a quadratic effect (p < 0.01), but there were significant differences in the mRNA expression of AgRP and POMC (p ≥ 0.10). Dietary calcium propionate did not improve lamb growth performance in lambs feed with only forage diets. Intake was not correlated with feed intake with mRNA expression of neuropeptides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。