Optimizing neurogenic potential of enteric neurospheres for treatment of neurointestinal diseases

优化肠神经球的神经发生潜力以治疗神经肠道疾病

阅读:6
作者:Lily S Cheng, Hannah K Graham, Wei Hua Pan, Nandor Nagy, Alfonso Carreon-Rodriguez, Allan M Goldstein #, Ryo Hotta #

Background

Enteric neurospheres derived from postnatal intestine represent a promising avenue for cell replacement therapy to treat Hirschsprung disease and other neurointestinal diseases. We describe a simple method to improve the neuronal yield of spontaneously formed gut-derived neurospheres. Materials and

Conclusions

Enteric neurospheres formed from small intestine and supplemented with GDNF yield an enriched population of neural crest-derived progenitor cells and give rise to a high density of enteric neurons.

Methods

Enteric neurospheres were formed from the small and large intestines of mouse and human subjects. Neurosphere size, neural crest cell content, cell migration, neuronal differentiation, and neuronal proliferation in culture were analyzed. The effect of supplemental neurotrophic factors, including glial cell line-derived neurotrophic factor (GDNF) and endothelin-3, was also assessed.

Results

Mouse small intestine-derived neurospheres contained significantly more P75-expressing neural crest-derived cells (49.9 ± 15.3% versus 21.6 ± 11.9%, P < 0.05) and gave rise to significantly more Tuj1-expressing neurons than colon-derived neurospheres (69.9 ± 8.6% versus 46.2 ± 15.6%, P < 0.05). A similar pattern was seen in neurospheres isolated from human small and large intestine (32.6 ± 17.5% versus 10.2 ± 8.2% neural crest cells, P < 0.05; 29.7 ± 16.4% versus 16.0 ± 13.5% enteric neurons, P < 0.05). The addition of GDNF to the culture media further improved the neurogenic potential of small intestinal neurospheres (75.9 ± 4.0% versus 67.8 ± 5.8%, P < 0.05) whereas endothelin-3 had no effect. Conclusions: Enteric neurospheres formed from small intestine and supplemented with GDNF yield an enriched population of neural crest-derived progenitor cells and give rise to a high density of enteric neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。