Oleanolic acid inhibits aldo-keto reductase family 1 member B10-induced cancer stemness and avoids cisplatin-based chemotherapy resistance via the Snail signaling pathway in oral squamous cell carcinoma cell lines

齐墩果酸通过 Snail 信号通路抑制口腔鳞状细胞癌细胞系中醛酮还原酶家族 1 成员 B10 诱导的癌症干性并避免顺铂化疗耐药性

阅读:20
作者:Hui-Hsin Ko, Han-Yi E Chou, Hsin-Han Hou, Wei-Ting Kuo, Wei-Wen Liu, Mark Yen-Ping Kuo, Shih-Jung Cheng

Conclusion

Arecoline-induced ROS/RNS to hyper-activate AKR1B10 in tumor sphere cells via the TGF-β1-Smad3 pathway. Furthermore, AKR1B10 enhanced CDDP resistance in OSCC cells via EMT-inducing markers. Finally, Finally, OA may efficiently target CDDP resistance, reverse stemness in OSCC cells, and have the potential as a novel anticancer drug.

Methods

Gain- and Loss- of AKR1B10 functions were analyzed using WB and q-PCR of OSCC cells. Stemness, epithelial mesenchymal transition (EMT) markers, and CDDP drug resistance in overexpressed AKR1B10 were also identified.

Purpose

Oral squamous cell carcinoma (OSCC) is a common malignancy often associated with poor prognosis due to chemoresistance. In this study, we investigated whether arecoline, a major alkaloid in betel nuts, can stimulate aldo-keto reductase family 1 member B10 (AKR1B10) levels in OSCC, promoting cancer stemness and leading to resistance to cisplatin (CDDP)-based chemotherapy. Materials and

Results

Upregulated AKR1B10 in OSCC significantly increased cell motility and aggregation. The results also showed that the canonical TGF-β1-Smad3 pathway was involved in arecoline-induced AKR1B10 expression, further increasing cancer stemness with CDDP resistance via the Snail-dependent EMT pathway. Moreover, oleanolic acid (OA) and ROS/RNS (reactive oxygen/nitrogen species) inhibitors effectively reversed AKR1B10-induced CDDP-resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。