Dissociation of disulfide-intact somatostatin ions: the roles of ion type and dissociation method

二硫键完整生长抑素离子的解离:离子类型和解离方法的作用

阅读:3
作者:Marija Mentinova, Hongling Han, Scott A McLuckey

Abstract

The dissociation chemistry of somatostatin-14 was examined using various tandem mass spectrometry techniques including low-energy beam-type and ion trap collision-induced dissociation (CID) of protonated and deprotonated forms of the peptide, CID of peptide-gold complexes, and electron transfer dissociation (ETD) of cations. Most of the sequence of somatostatin-14 is present within a loop defined by the disulfide linkage between Cys-3 and Cys-14. The generation of readily interpretable sequence-related ions from within the loop requires the cleavage of at least one of the bonds of the disulfide linkage and the cleavage of one polypeptide backbone bond. CID of the protonated forms of somatostatin did not appear to give rise to an appreciable degree of dissociation of the disulfide linkage. Sequential fragmentation via multiple alternative pathways tended to generate very complex spectra. CID of the anions proceeded through CH(2)-S cleavages extensively but relatively few structurally diagnostic ions were generated. The incorporation of Au(I) into the molecule via ion/ion reactions followed by CID gave rise to many structurally relevant dissociation products, particularly for the [M+Au+H](2+) species. The products were generated by a combination of S-S bond cleavage and amide bond cleavage. ETD of the [M+3H](3+) ion generated rich sequence information, as did CID of the electron transfer products that did not fragment directly upon electron transfer. The electron transfer results suggest that both the S-S bond and an N-C(alpha) bond can be cleaved following a single electron transfer reaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。