Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells

使用华通氏胶间充质干细胞对 PLCL-丝胶蛋白共聚物膜进行生物相容性评估

阅读:3
作者:Kewalin Inthanon, Donraporn Daranarong, Pimwalan Techaikool, Winita Punyodom, Vorathep Khaniyao, Audrey M Bernstein, Weerah Wongkham

Abstract

Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35-40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N-H, and C-N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。