Synthesis, characterization, and photocatalytic activities of green sol-gel ZnO nanoparticles using Abelmoschus esculentus and Salvia officinalis: A comparative study versus co-precipitation-synthesized nanoparticles

使用黄蜀葵和鼠尾草合成、表征和光催化活性的绿色溶胶-凝胶 ZnO 纳米粒子:与共沉淀合成纳米粒子的比较研究

阅读:6
作者:Zakie Aalami, Mohammadsaleh Hoseinzadeh, Parsa Hosseini Manesh, Amir Hossein Aalami, Zarrin Es'haghi, Majid Darroudi, Amirhossein Sahebkar, Hasan Ali Hosseini

Background

The development of green chemistry

Conclusions

In conclusion, the best MB dye degradation capacity belonged to co-precipitation ZnO nanoparticles followed by S. officinalis and A. esculentus nanoparticles.

Methods

To compare the properties of ZnO nanoparticles, another type of ZnO-NPs was synthesized using the co-precipitation method. The characterization of synthesized nanoparticles was performed using thermogravimetric analysis (TGA-DTG), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), Zeta potential (ZP), field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and UV-Vis spectrophotometry.

Results

Based on XRD results, the average crystalline size of nanoparticles was calculated using the Debye-Scherer equation for synthesized nanoparticles using the S. officinalis at 22.99 nm and for the A. esculentus at 29.79 nm, and for the co-precipitation method at 18.83 nm. The FE-SEM images showed spherical ZnO nanoparticles. Photocatalytic properties of ZnO-NPs were investigated for remove of methylene blue organic dye in the presence of UV light. The pH 10 was identified as the best pH, which had the highest percentage of color degradation. All three types of nanoparticles were tested by up to 360 min to optimize the dyeing time. For A. esculentus, the highest percentage of color removal occurred in the first 90 min (41.0 %), for S. officinalis nanoparticles between 75 and 90 min (86.9 %), and for chemically synthesized nanoparticles between 30 and 45 min (100 %). Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。