Single-cell transcriptomic profiling provides insights into retinal endothelial barrier properties

单细胞转录组分析有助于了解视网膜内皮屏障特性

阅读:6
作者:Mark I Watson, Peter Barabas, Mary McGahon, Megan McMahon, Marc A Fuchs, Tim M Curtis, David A Simpson

Conclusions

We optimized a workflow for single-cell transcriptomics in primary RMECs. The results provide fundamental insights into the genes involved in formation of the retinal-microvascular barrier.

Methods

Individual RMECs were captured on the Fluidigm C1 system, cDNA libraries were prepared using a Nextera XT kit, and sequencing was performed on a NextSeq system (Illumina). Data analysis was performed using R packages Scater, SC3, and Seurat, and the browser application Automated Single-cell Analysis Pipeline (ASAP). Alternative splicing events in single cells were quantified with Outrigger. Cytoscape was used for network analyses.

Purpose

To better characterize retinal endothelial barrier properties through analysis of individual transcriptomes of primary bovine retinal microvascular endothelial cells (RMECs).

Results

Application of a single-cell RNA sequencing (scRNA-seq) analysis workflow showed that RMECs form a relatively homogeneous population in culture, with the main differences related to proliferation status. Expression of markers from along the arteriovenous tree suggested that most cells originated from capillaries. Average gene expression levels across all cells were used to develop an in silico model of the inner blood-retina barrier incorporating junctional proteins not previously reported within the retinal vasculature. Correlation of barrier gene expression among individual cells revealed a subgroup of genes highly correlated with PECAM-1 at the center of the correlation network. Numerous alternative splicing events involving exons within microvascular barrier genes were observed, and in many cases, individual cells expressed one isoform exclusively. Conclusions: We optimized a workflow for single-cell transcriptomics in primary RMECs. The results provide fundamental insights into the genes involved in formation of the retinal-microvascular barrier.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。