The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women

绝经前女性心肺健康与肠道菌群组成的关系

阅读:8
作者:Yifan Yang, Yi Shi, Petri Wiklund, Xiao Tan, Na Wu, Xiaobo Zhang, Olli Tikkanen, Chenhong Zhang, Eveliina Munukka, Sulin Cheng0

Abstract

The aim of this study was to investigate the association between cardiorespiratory fitness and gut microbiota composition in premenopausal women. The participants consisted of 71 premenopausal Finnish women (aged 19-49 years). Gut microbiota were analyzed using flow cytometry, 16S rRNA gene hybridization and DNA-staining. Maximum oxygen uptake (VO2max) was assessed by respiratory gas analyzer and body composition by Bioimpdance. We found that participants with low VO2max had lower Bacteroides, but higher Eubacterium rectale-Clostridium coccoides than the high VO2max group (p < 0.05 for all). VO2max was inversely associated with EreC (r = -0.309, p = 0.01) but not with other bacteria. VO2max also negatively correlated with fat% (r = -0.755, p < 0.001), triglycerides (r = -0.274, p = 0.021) and leptin (r = -0.574, p < 0.001). By contrast, EreC was positively associated with fat% (r = 0.382, p = 0.002), dietary fat intake (r = 0.258, p = 0.034), triglycerides (r = 0.390, p = 0.002) and leptin (r = 0.424, p = 0.001), but negatively with carbohydrate intake (r = -0.252, p = 0.034) and HDL (r = -0.26, p = 0.028). After adjusting for age and dietary intake, all the significant associations remained. However, after adjusting for fat%, the associations between VO2max and EreC disappeared. Our results suggest that cardiorespiratory fitness is associated with gut microbiota composition, independent of age and carbohydrate or fat intake. The association between VO2max and EreC, however, appears to be mediated by body fatness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。