Thymol-Loaded Polymeric Nanoparticles Improve the Postharvest Microbiological Safety of Blueberries

载百里酚的聚合物纳米粒子可提高蓝莓采后微生物安全性

阅读:7
作者:Syarifah Ab Rashid, Woei-Yenn Tong, Chean-Ring Leong, Wen-Nee Tan, Chee-Keong Lee, Mohd Razealy Anuar, Siew-Hway Teo, Siti Khalida Abdull Lazit, Jun-Wei Lim, Nur Amiera Syuhada Rozman

Background

The presence of Yersinia enterocolitica on raw food products raises the concern of yersiniosis as most of the berries are consumed raw. This is a challenging issue from the food safety aspect since it could increase the occurrence of foodborne diseases among humans. Thus, it is crucial to implement an effective sanitation before the packaging. Experimental approach: This study aims to synthesize and characterize thymol-loaded polyvinyl alcohol (Thy/PVA) nanoparticles as a sanitizer for postharvest treatment of blueberries. Thy/PVA nanoparticles were characterized by spectroscopic and microscopic approaches, prior to the analyses of antimicrobial properties.

Conclusions

The diameter size of the nanoparticles was on average 84.7 nm, with a surface charge of -11.73 mV. Based on Fourier transform infrared (FTIR) measurement, the Thy/PVA nanoparticles notably shifted to the frequency of 3275.70, 2869.66, 1651.02 and 1090.52 cm-1. A rapid burst was observed in the first hour of release study, and 74.9 % thymol was released from the PVA nanoparticles. The largest inhibition zone was displayed by methicillin-resistant Staphylococcus aureus (MRSA), followed by Y. enterocolitica and Salmonella typhi. However, amongst these bacteria, the inhibition and killing of Y. enterocolitica required a lower concentration of Thy/PVA nanoparticles. The treatment successfully reduced the bacterial load of Y. enterocolitica on blueberries by 100 %. Novelty and scientific contribution: Thymol is a plant-based chemical without reported adverse effects to humans. In this study, by using the nanotechnology method of encapsulation with PVA, we improved the stability and physicochemical properties of thymol. This nanoparticle-based sanitizer could potentially promote the postharvest microbiological safety of raw berries, which may become an alternative practice of food safety.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。