Lysosomal gene Hexb displays haploinsufficiency in a knock-in mouse model of Alzheimer's disease

溶酶体基因 Hexb 在阿尔茨海默病的敲入小鼠模型中表现出单倍体不足

阅读:5
作者:Lauren S Whyte, Célia Fourrier, Sofia Hassiotis, Adeline A Lau, Paul J Trim, Leanne K Hein, Kathryn J Hattersley, Julien Bensalem, John J Hopwood, Kim M Hemsley, Timothy J Sargeant

Abstract

Lysosomal network abnormalities are an increasingly recognised feature of Alzheimer's disease (AD), which appear early and are progressive in nature. Sandhoff disease and Tay-Sachs disease (neurological lysosomal storage diseases caused by mutations in genes that code for critical subunits of β-hexosaminidase) result in accumulation of amyloid-β (Aβ) and related proteolytic fragments in the brain. However, experiments that determine whether mutations in genes that code for β-hexosaminidase are risk factors for AD are currently lacking. To determine the relationship between β-hexosaminidase and AD, we investigated whether a heterozygous deletion of Hexb, the gene that encodes the beta subunit of β-hexosaminidase, modifies the behavioural phenotype and appearance of disease lesions in App NL-G-F/NL-G-F (App KI/KI ) mice. App KI/KI and Hexb +/- mice were crossed and evaluated in a behavioural test battery. Neuropathological hallmarks of AD and ganglioside levels in the brain were also examined. Heterozygosity of Hexb in App KI/KI mice reduced learning flexibility during the Reversal Phase of the Morris water maze. Contrary to expectation, heterozygosity of Hexb caused a small but significant decrease in amyloid beta deposition and an increase in the microglial marker IBA1 that was region- and age-specific. Hexb heterozygosity caused detectable changes in the brain and in the behaviour of an AD model mouse, consistent with previous reports that described a biochemical relationship between HEXB and AD. This study reveals that the lysosomal enzyme gene Hexb is not haplosufficient in the mouse AD brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。