Fast-relaxing cardiomyocytes exert a dominant role in the relaxation behavior of heterogeneous myocardium

快速舒张心肌细胞在异质性心肌舒张行为中起主导作用

阅读:6
作者:J Alexander Clark, Lorenzo R Sewanan, Jonas Schwan, Jonathan Kluger, Kenneth S Campbell, Stuart G Campbell

Abstract

Substantial variation in relaxation rate exists among cardiomyocytes within small volumes of myocardium; however, it is unknown how this variability affects the overall relaxation mechanics of heart muscle. In this study, we sought to modulate levels of cellular heterogeneity in a computational model, then validate those predictions using an engineered heart tissue platform. We formulated an in silico tissue model composed of half-sarcomeres with varied relaxation rates, incorporating single-cell cardiomyocyte experimental data. These model tissues randomly sampled relaxation parameters from two offset distributions of fast- and slow-relaxing populations of half-sarcomeres. Isometric muscle twitch simulations predicted a complex relationship between relaxation time and the proportion of fast-versus slow-relaxing cells in heterogeneous tissues. Specifically, a 50/50 mixture of fast and slow cells did not lead to relaxation time that was the mean of the relaxation times associated with the two pure cases. Rather, the mean relaxation time was achieved at a ratio of 70:30 slow:fast relaxing cells, suggesting a disproportionate impact of fast-relaxing cells on overall tissue relaxation. To examine whether this behavior persists in vitro, we constructed engineered heart tissues from two lines of fast- and slow-relaxing human iPSC-derived cardiomyocytes. Cell tracking via fluorescent nanocrystals confirmed the presence of both cell populations in the 50/50 mixed tissues at the time of mechanical characterization. Isometric muscle twitch relaxation times of these mixed-population engineered heart tissues showed agreement with the predictions from the model, namely that the measured relaxation rate of 50/50 mixed tissues more closely resembled that of tissues made with 100% fast-relaxing cells. Our observations suggest that cardiomyocyte diversity can play an important role in determining tissue-level relaxation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。