Mechanism of Yixishu lotion in the treatment of vaginitis based on network pharmacology combined with experimental validation: an experimental research study

基于网络药理学结合实验验证益悉舒洗剂治疗阴道炎作用机制的实验研究

阅读:5
作者:Weimin Huo, Zeng Jing, Ran Wang, Sumei Tao, Qiaohong Li, Shuli Gao, Meimei Feng

Conclusion

YXSL may achieve its therapeutic effect on vaginitis by reducing the inflammatory response, improving oxidative stress response, and improving body immunity, and it provides a theoretical basis for further research on its pharmacodynamic material basis and mechanism of action.

Methods

The active components and drug-related targets of YXSL were retrieved from the TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) database, and the target was predicted by the UniProt database. Searching for genes related to 'vaginitis' disease in the GeneCards database, a total of 2581 drug targets were obtained. The interaction between proteins (PPI - protein-protein interaction) relationship was obtained by STRING database and visualized by Cytoscape software. Finally, the 'Bioconductor' installation package in R software was used to analyze the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of the target.

Objective

Yixishu lotion (YXSL) originates from the summary of traditional Chinese medicine clinical experience and constantly improves in practice in clinical validation of the exact efficacy of traditional Chinese medicine prescription. To explore the mechanism of YXSL in treating vaginitis and the potential mechanisms based on network pharmacology and experimental verification.

Results

In this study, by the method of network pharmacology, the key active components of YXSL were flavonoids such as quercetin, apigenin, kaempferol, luteolin, β-sitosterol; the main core proteins included MAPK14, TP53, FGF2, ESR1, MAPK3, MAPK1, VEGFA, JUN, IL-6, and the KEGG pathway was mainly involved in MAPK pathway, Th17 pathway, Malaria, TNF pathway, and other signaling pathways. Animal experiments showed that the clinical symptoms and vaginal tissue lesions of the YXSL group and the fluconazole group were improved, and the levels of TNF-α (tumor necrosis factor alpha), IL-6 (interleukin-6), MDA (malondialdehyde), SOD (superoxide dismutase), IL-4, and IFN-γ (interferon-γ) in vaginal tissue and serum were better than the model group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。