P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation

P2Y2 受体激活神经生长因子/TrkA 信号传导以增强神经元分化

阅读:7
作者:David B Arthur, Katerina Akassoglou, Paul A Insel

Abstract

Neurotrophins are essential for neuronal differentiation, but the onset and the intensity of neurotrophin signaling within the neuronal microenvironment are poorly understood. We tested the hypothesis that extracellular nucleotides and their cognate receptors regulate neurotrophin-mediated differentiation. We found that 5'-O-(3-thio)triphosphate (ATPgammaS) activation of the G protein-coupled receptor P2Y(2) in the presence of nerve growth factor leads to the colocalization and association of tyrosine receptor kinase A and P2Y(2) receptors and is required for enhanced neuronal differentiation. Consistent with these effects, ATPgammaS promotes phosphorylation of tyrosine receptor kinase A, early response kinase 1/2, and p38, thereby enhancing sensitivity to nerve growth factor and accelerating neurite formation in both PC12 cells and dorsal root ganglion neurons. Genetic or small interfering RNA depletion of P2Y(2) receptors abolished the ATPgammaS-mediated increase in neuronal differentiation. Moreover, in vivo injection of ATPgammaS into the sciatic nerve increased growth-associated protein-43 (GAP-43), a marker for axonal growth, in wild-type but not P2Y(2)(-/-) mice. The interactions of tyrosine kinase- and P2Y(2)-signaling pathways provide a paradigm for the regulation of neuronal differentiation and suggest a role for P2Y(2) as a morphogen receptor that potentiates neurotrophin signaling in neuronal development and regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。