Isoform-Specific Compensation of Cyclooxygenase (Ptgs) Genes during Implantation and Late-Stage Pregnancy

环氧合酶 (Ptgs) 基因在植入和妊娠晚期的异构体特异性补偿

阅读:5
作者:Xinzhi Li, Laurel L Ballantyne, Mackenzie C Crawford, Garret A FitzGerald, Colin D Funk

Abstract

The participation of cyclooxygenase (COX) in embryo implantation and parturition has been studied extensively. However, the distinct role of the two COX isoforms in these processes still remains unclear. Using three characterized mouse lines where the Ptgs1 and Ptgs2 genes substitute for one another, this study focused on the reproductive significance of their distinct roles and potential biological substitution. In both non-gravid and gravid uteri, the knock-in COX-2 is expressed constitutively, whereas the knock-in COX-1 is slightly induced in early implantation. The delayed onset of parturition previously found in COX-1 null mice was corrected by COX-2 exchange in COX-2>COX-1 mice, with normal term pregnancy, gestation length and litter size. In contrast, loss of native COX-2 in COX-1>COX-2 mice resulted in severely impaired reproductive functions. Knock-in COX-1 failed to substitute for the loss of COX-2 in COX-1>COX-2 mice during implantation, indicating that COX-1 may be replaced by COX-2, but not vice versa. A panel of prostaglandins detected in uterus and ovary demonstrates that prostaglandin biosynthesis preferentially depends on native COX-1, but not COX-2. More interestingly, preferential compensations by the COX isoforms were sustained despite weak dependency on their role in prostaglandin biosynthesis in the uterus and ovary.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。