Alpha and gamma mangostins inhibit wild-type B SARS-CoV-2 more effectively than the SARS-CoV-2 variants and the major target is unlikely the 3C-like protease

α-和γ-芒果素抑制野生型 B 型 SARS-CoV-2 的效果比抑制 SARS-CoV-2 变体更有效,并且主要靶点不太可能是 3C 样蛋白酶

阅读:6
作者:Aphinya Suroengrit, Van Cao, Patcharin Wilasluck, Peerapon Deetanya, Kittikhun Wangkanont, Kowit Hengphasatporn, Ryuhei Harada, Supakarn Chamni, Asada Leelahavanichkul, Yasuteru Shigeta, Thanyada Rungrotmongkol, Supot Hannongbua, Warinthorn Chavasiri, Supaporn Wacharapluesadee, Eakachai Prompetchara

Background

Anti-SARS-CoV-2 and immunomodulatory drugs are important for treating clinically severe patients with respiratory distress symptoms. Alpha- and gamma-mangostins (AM and GM) were previously reported as potential 3C-like protease (3CLpro) and Angiotensin-converting enzyme receptor 2 (ACE2)-binding inhibitors in silico.

Conclusion

AM and GM inhibited SARS-CoV-2 with the highest potency at the wild-type B and the lowest at the B.1.1.529. Multiple targets were expected to integratively inhibit viral replication in cell-based system.

Methods

We tested the translation and replication efficiencies of SARS-CoV-2 in the presence of AM and GM. Initial and subgenomic translations were evaluated by immunofluorescence of SARS-CoV-2 3CLpro and N expressions at 16 h after infection. The viral genome was quantified and compared with the untreated group. We also evaluated the efficacies and cytotoxicities of AM and GM against four strains of SARS-CoV-2 (wild-type B, B.1.167.2, B.1.36.16, and B.1.1.529) in Vero E6 cells. The potential targets were evaluated using cell-based anti-attachment, time-of-drug addition, in vitro 3CLpro activities, and ACE2-binding using a surrogated viral neutralization test (sVNT). Moreover, additional targets were explored using combinatorial network-based interactions and Chemical Similarity Ensemble Approach (SEA).

Objective

We aimed to evaluate two active compounds, AM and GM, from Garcinia mangostana for their antivirals against SARS-CoV-2 in live virus culture systems and their cytotoxicities using standard

Results

AM and GM reduced SARS-CoV-2 3CLpro and N expressions, suggesting that initial and subgenomic translations were globally inhibited. AM and GM inhibited all strains of SARS-CoV-2 at EC50 of 0.70-3.05 μM, in which wild-type B was the most susceptible strain (EC50 0.70-0.79 μM). AM was slightly more efficient in the variants (EC50 0.88-2.41 μM), resulting in higher selectivity indices (SI 3.65-10.05), compared to the GM (EC50 0.94-3.05 μM, SI 1.66-5.40). GM appeared to be more toxic than AM in both Vero E6 and Calu-3 cells. Cell-based anti-attachment and time-of-addition suggested that the potential molecular target could be at the post-infection. 3CLpro activity and ACE2 binding were interfered with in a dose-dependent manner but were insufficient to be a major target. Combinatorial network-based interaction and chemical similarity ensemble approach (SEA) suggested that fatty acid synthase (FASN), which was critical for SARS-CoV-2 replication, could be a target of AM and GM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。