Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications

Lrrk2 在丝氨酸 129 位点磷酸化 α-突触核蛋白:帕金森病的影响

阅读:4
作者:Hong Qing, Winnie Wong, Edith G McGeer, Patrick L McGeer

Abstract

Mutations in the alpha synuclein gene (SNCA) are the most potent cause of autosomal dominant Parkinson disease (PD) while mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause. We hypothesized that a direct interaction may exist between their protein products. Here we show that full-length Lrrk2 or fragments containing its kinase domain have a significant capacity to phosphorylate recombinant alpha synuclein (Asyn) at serine 129. Such phosphorylated Asyn is the major component of pathological deposits in PD. We further show that the G2019S mutation in Lrrk2, which is the most common genetic determinant of PD, has a significantly greater capacity than wild-type Lrrk2 to phosphorylate Asyn. This suggests that the G2019S mutant protein may cause PD by generating pathological levels of phosphorylated Asyn. Controlling Lrrk2 Asyn phosphokinase activity may be an approach to disease modifying therapy for PD and other synucleinopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。