The Effect of Irradiance on the Degree of Conversion and Volumetric Polymerization Shrinkage of Different Bulk-Fill Resin-Based Composites: An In Vitro Study

辐射对不同大块填充树脂基复合材料转化程度和体积聚合收缩的影响:体外研究

阅读:5
作者:Abrar N Bin Nooh, Hend Al Nahedh, Mohammad AlRefeai, Fahad Alkhudhairy

Conclusion

Curing light intensities do not significantly influence the VPS of RBC materials. Reveal HD bulk cured with high-intensity light had the highest DC.

Methods

Twenty-four specimens of each RBC material (Filtek one bulk-fill posterior, Reveal HD Bulk, Tetric N-Ceram, and Filtek Z350) were prepared. The RBCs were shaped in molds and cured using an LED curing light unit at high-intensity (1,200 mW/cm2) for 20 seconds and low-intensity (650 mW/cm2) for 40 seconds Fourier-transform infrared (FTIR) spectroscopy was used to determine the DC and microcomputed tomography was used to evaluate VPS. Data were analyzed using one- and two-way ANOVA, independent t-test, and Tukey's and Scheffe's post hoc multiple comparison tests.

Objective

The influence of different light-emitting diode (LED) curing light intensities on the degree of conversion (DC) and volumetric polymerization shrinkage (VPS) of bulk-fill resin-based composite (RBC) restorative materials was evaluated. Materials and

Results

With high-intensity curing light, Reveal HD showed the highest DC (85.689 ± 6.811%) and Tetric N-Ceram the lowest (52.60 ± 9.38%). There was no statistical difference in VPS when using high- or low-intensity curing light. The highest VPS was observed for Reveal HD (2.834-3.193%); there was no statistical difference (p > 0.05) among the other RBCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。