Selection of lactic acid bacteria for biopreservation of salmon products applying processing-dependent growth kinetic parameters and antimicrobial mechanisms

应用加工依赖性生长动力学参数和抗菌机制选择用于鲑鱼产品生物保鲜的乳酸菌

阅读:4
作者:Jelena Stupar, Sunniva Hoel, Sigrid Strømseth, Jørgen Lerfall, Turid Rustad, Anita Nordeng Jakobsen

Abstract

Biopreservation using lactic acid bacteria (LAB) is a promising technology to prevent the growth of pathogenic microorganisms in fresh and mildly processed food. The main aim of this study was to select LAB, originally isolated from ready-to-eat (RTE) seafood, for biopreservation of fresh salmon and processed salmon products. Ten LAB strains (five Carnobacterium and five Leuconostoc) were selected based on previously demonstrated bioprotective properties to investigate their antimicrobial mechanisms and temperature-dependent growth kinetics in a sterile salmon juice model system. Furthermore, five strains (three Carnobacterium and two Leuconostoc) were selected to test process-dependent growth kinetic parameters relevant to the secondary processing of salmon. Two strains (Carnobacterium maltaromaticum 35 and C. divergens 468) showed bacteriocin-like activity against Listeria innocua, while inhibitory effect of cell-free supernatants (CFS) was not observed against Escherichia coli. All selected strains were able to grow in sterile salmon juice at tested temperatures (4, 8, 12 and 16 °C), with specific growth rates (μ) ranging from 0.01 to 0.04/h at 4 °C and reaching a maximum population density of 8.4-9 log CFU/ml. All five strains tested for process-dependent growth kinetic parameters were able to grow in the range of 0.5-5% NaCl and 0.13-0.26% purified condensed smoke (VTABB and JJT01), with inter- and intraspecies variation in growth kinetics. According to the temperature-dependent growth kinetics and antimicrobial assay results, two strains, Leuconostoc mesenteroides 68 (Le.m.68) and C. divergens 468 (C d.468), were selected for in situ test to validate their ability to grow in vacuum-packed fresh salmon at 4 °C. Both strains were able to grow at maximum growth rates of 0.29 ± 0.04/d for Le. m.68 and 0.39 ± 0.06/d for C.d.468, and their final concentrations were 7.91 ± 0.31 and 8.02 ± 0.25 log CFU/g, respectively. This study shows that LAB, originally isolated from RTE seafood, have promising potential as bioprotective strains in fresh and processed salmon products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。