Classifying T cell activity in autofluorescence intensity images with convolutional neural networks

使用卷积神经网络对自发荧光强度图像中的 T 细胞活动进行分类

阅读:5
作者:Zijie J Wang, Alex J Walsh, Melissa C Skala, Anthony Gitter

Abstract

The importance of T cells in immunotherapy has motivated developing technologies to improve therapeutic efficacy. One objective is assessing antigen-induced T cell activation because only functionally active T cells are capable of killing the desired targets. Autofluorescence imaging can distinguish T cell activity states in a non-destructive manner by detecting endogenous changes in metabolic co-enzymes such as NAD(P)H. However, recognizing robust activity patterns is computationally challenging in the absence of exogenous labels. We demonstrate machine learning methods that can accurately classify T cell activity across human donors from NAD(P)H intensity images. Using 8260 cropped single-cell images from six donors, we evaluate classifiers ranging from traditional models that use previously-extracted image features to convolutional neural networks (CNNs) pre-trained on general non-biological images. Adapting pre-trained CNNs for the T cell activity classification task provides substantially better performance than traditional models or a simple CNN trained with the autofluorescence images alone. Visualizing the images with dimension reduction provides intuition into why the CNNs achieve higher accuracy than other approaches. Our image processing and classifier training software is available at https://github.com/gitter-lab/t-cell-classification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。