Nutrient-Dependent Mitochondrial Fission Enhances Osteoblast Function

营养依赖性线粒体裂变增强成骨细胞功能

阅读:5
作者:Ciro Menale, Giovanna Trinchese, Immacolata Aiello, Giulia Scalia, Monica Dentice, Maria Pina Mollica, Nal Ae Yoon, Sabrina Diano

Background

The bone synthesizing function of osteoblasts (OBs) is a highly demanding energy process that requires nutrients. However, how nutrient availability affects OBs behavior and bone mineralization remain to be fully understood.

Conclusions

Our results revealed that OBs function was enhanced in the presence of glucose and PA at 25 μM. This was associated with increased OBs mitochondrial respiration and dynamics. These results suggest a role for nutrient availability in bone physiology and pathophysiology.

Methods

MC3T3-E1 cell line and primary OBs (OBs) cultures were treated with physiological levels of glucose (G; 5.5 mM) alone or with the addition of palmitic acid (G+PA) at different concentrations. Mitochondria morphology and activity were evaluated by fluorescence microscopy, qPCR, and oxygen consumption rate (OCR) measurement, and OBs function was assessed by mineralization assay.

Results

The addition of non-lipotoxic levels of 25 μM PA to G increased mineralization in OBs. G+25 μM PA exposure reduced mitochondria size in OBs, which was associated with increased activation of dynamin-related protein 1, a mitochondrial fission protein, enhanced mitochondria OCR and ATP production, and increased expression of oxidative phosphorylation genes. Treatment with Mdivi-1, a putative inhibitor of mitochondrial fission, reduced osteogenesis and mitochondrial respiration in OBs. Conclusions: Our results revealed that OBs function was enhanced in the presence of glucose and PA at 25 μM. This was associated with increased OBs mitochondrial respiration and dynamics. These results suggest a role for nutrient availability in bone physiology and pathophysiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。