8-Oxoguanine DNA Glycosylase (OGG1) Cys326 Variant: Increased Risk for Worse Outcome of Patients with Locally Advanced Rectal Cancer after Multimodal Therapy

8-氧鸟嘌呤 DNA 糖基化酶 (OGG1) Cys326 变异:多模式治疗后局部晚期直肠癌患者预后恶化的风险增加

阅读:6
作者:Martin Leu, Theresa Riebeling, Leif Hendrik Dröge, Laura Hubert, Manuel Guhlich, Hendrik Andreas Wolff, Jürgen Brockmöller, Jochen Gaedcke, Stefan Rieken, Markus Anton Schirmer

Abstract

Despite excellent loco-regional control by multimodal treatment of locally advanced rectal cancer, a substantial portion of patients succumb to this disease. As many treatment effects are mediated via reactive oxygen species (ROS), we evaluated the effect of single nucleotide polymorphisms (SNPs) in ROS-related genes on clinical outcome. Based on the literature, eight SNPs in seven ROS-related genes were assayed. Eligible patients (n = 287) diagnosed with UICC stage II/III rectal cancer were treated multimodally starting with neoadjuvant radiochemotherapy (N-RCT) according to the clinical trial protocols of CAO/ARO/AIO-94, CAO/ARO/AIO-04, TransValid-A, and TransValid-B. The median follow-up was 64.4 months. The Ser326Cys polymorphism in the human OGG1 gene affected clinical outcome, in particular cancer-specific survival (CSS). This effect was comparable in extent to the ypN status, an already established strong prognosticator for patient outcome. Homozygous and heterozygous carriers of the Cys326 variant (n = 105) encountered a significantly worse CSS (p = 0.0004 according to the log-rank test, p = 0.01 upon multiple testing adjustment). Cox regression elicited a hazard ratio for CSS of 3.64 (95% confidence interval 1.70-7.78) for patients harboring the Cys326 allele. In a multivariable analysis, the effect of Cys326 on CSS was preserved. We propose the genetic polymorphism Ser326Cys as a promising biomarker for outcome in rectal cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。