Age-dependent motor dysfunction due to neuron-specific disruption of stress-activated protein kinase MKK7

由于应激激活蛋白激酶 MKK7 的神经元特异性破坏而导致的年龄依赖性运动功能障碍

阅读:6
作者:Tokiwa Yamasaki, Norie Deki-Arima, Asahito Kaneko, Norio Miyamura, Mamiko Iwatsuki, Masato Matsuoka, Noriko Fujimori-Tonou, Yoshimi Okamoto-Uchida, Jun Hirayama, Jamey D Marth, Yuji Yamanashi, Hiroshi Kawasaki, Koji Yamanaka, Josef M Penninger, Shigenobu Shibata, Hiroshi Nishina0

Abstract

c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family and controls various physiological processes including apoptosis. A specific upstream activator of JNKs is the mitogen-activated protein kinase kinase 7 (MKK7). It has been reported that MKK7-JNK signaling plays an important regulatory role in neural development, however, post-developmental functions in the nervous system have not been elucidated. In this study, we generated neuron-specific Mkk7 knockout mice (MKK7 cKO), which impaired constitutive activation of JNK in the nervous system. MKK7 cKO mice displayed impaired circadian behavioral rhythms and decreased locomotor activity. MKK7 cKO mice at 8 months showed motor dysfunctions such as weakness of hind-limb and gait abnormality in an age-dependent manner. Axonal degeneration in the spinal cord and muscle atrophy were also observed, along with accumulation of the axonal transport proteins JNK-interacting protein 1 and amyloid beta precursor protein in the brains and spinal cords of MKK7 cKO mice. Thus, the MKK7-JNK signaling pathway plays important roles in regulating circadian rhythms and neuronal maintenance in the adult nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。