In silico Design and Characterization of Multi-epitopes Vaccine for SARS-CoV2 from Its Spike Protein

基于 SARS-CoV2 刺突蛋白的多表位疫苗的计算机设计和表征

阅读:7
作者:Gunderao H Kathwate

Abstract

COVID 19 is a disease caused by a novel coronavirus, SARS-CoV2 originated in China most probably of Bat origin. Multiepitopes vaccine would be useful in eliminating SARS-CoV2 infections as asymptomatic patients are in large numbers. In response to this, we utilized bioinformatic tools to develop an efficient vaccine candidate against SARS-CoV2. The designed vaccine has effective BCR and TCR epitopes screened from the sequence of S-protein of SARS-CoV2. Predicted BCR and TCR epitopes found antigenic, non-toxic and probably non-allergen. Modeled and the refined tertiary structure predicted as valid for further use. Protein-Protein interaction prediction of TLR2/4 and designed vaccine indicates promising binding. The designed multiepitope vaccine has induced cell-mediated and humoral immunity along with increased interferon-gamma response. Macrophages and dendritic cells were also found to increase upon the vaccine exposure. In silico codon optimization and cloning in expression vector indicates that the vaccine can be efficiently expressed in E. coli. In conclusion, the predicted vaccine is a good antigen, probable no allergen, and has the potential to induce cellular and humoral immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。