Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants

染色质拓扑结构域与植物中串联重复的快速形成有关

阅读:7
作者:Ni Ma, Xiaopeng Li, Dong Ci, Hai Yue Zeng, Congxiao Zhang, Xiaodong Xie, Caihong Zhong, Xing Wang Deng, Dawei Li, Hang He

Abstract

In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood. This study integrates Hi-C data from diverse plant species, demonstrating that nuclear DNA content influences large-scale chromosome conformation and affects the finer details of compartmental patterns. These contrasting compartmental patterns are distinguished by gene-to-gene loops and validated through cytological observations. Additionally, a novel chromatin domain type associated with tandem duplicate gene clusters is identified. These domains are independent of H3K27me3-mediated chromatin compartmentalization and exhibit evolutionary conservation across species. Gene pairs within TAD-like domains are younger and show higher levels of coexpression. These domains potentially promote the formation of tandem duplicates, a property appears unique to the Actinidia family. Overall, this study reveals functional chromatin domains in plants and provides evidence for the role of three-dimensional chromatin architecture in gene regulation and genome evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。