FAK activity exacerbates disturbed flow-mediated atherosclerosis via VEGFR2-Cbl-NF-κB signaling

FAK 活性通过 VEGFR2-Cbl-NF-κB 信号传导加剧血流介导的动脉粥样硬化

阅读:5
作者:James M Murphy, Duyen Thi Kieu Tran, Kyuho Jeong, Ly Nguyen, Mai Thi Nguyen, Dhananjay Tambe, Hanjoong Jo, Eun-Young Erin Ahn, Ssang-Taek Steve Lim

Abstract

Atherosclerosis develops at predictable sites in the vasculature where branch points and curvatures create non-laminar disturbed flow. This disturbed flow causes vascular inflammation by increased endothelial cell (EC) barrier permeability and the expression of inflammatory genes such as vascular cell adhesion molecule-1 (VCAM-1). Vascular endothelial growth factor receptor 2 (VEGFR2) is important for flow-induced EC inflammation; however, there are still some gaps in the signaling pathway. Focal adhesion kinase (FAK) is a protein tyrosine kinase whose expression has been implicated in flow-mediated signaling in ECs. However, the link between FAK and VEGFR2 in flow-mediated inflammation signaling has remained unelucidated. Here we found that priming of VEGFR2 with VEGF was critical for flow-mediated activation of FAK and NF-κB. Mechanistically, FAK activation triggers tyrosine phosphorylation of Casitas B-lineage lymphoma (CBL; an E3 ubiquitin ligase) that interacts with VEGFR2 under flow conditions. Further, Apoe-/- mice fed a western diet (WD) exhibited increased FAK activity within the atheroprone disturbed flow region of the inner aortic arch compared to the outer arch. Disturbed flow-induced FAK activation is associated with elevated VEGFR2 on the surface of ECs of the inner aortic arch, but not in the outer arch. Taken together, these data suggest that suppression of augmented FAK activity under disturbed flow may prove beneficial in reducing pro-inflammatory signaling of the endothelial layer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。