A Drosophila model to screen Alport syndrome COL4A5 variants for their functional pathogenicity

用果蝇模型筛选 Alport 综合征 COL4A5 变异的功能致病性

阅读:5
作者:Jianli Duan, Pei Wen, Yunpo Zhao, Joyce van de Leemput, Jennifer Lai Yee, Damian Fermin, Bradley A Warady, Susan L Furth, Derek K Ng, Matthew G Sampson, Zhe Han

Abstract

Alport syndrome is a hereditary chronic kidney disease, attributed to rare pathogenic variants in either of three collagen genes (COL4A3/4/5) with most localized in COL4A5. Trimeric type IV Collagen α3α4α5 is essential for the glomerular basement membrane that forms the kidney filtration barrier. A means to functionally assess the many candidate variants and determine pathogenicity is urgently needed. We used Drosophila, an established model for kidney disease, and identify Col4a1 as the functional homolog of human COL4A5 in the fly nephrocyte (equivalent of human podocyte). Fly nephrocytes deficient for Col4a1 showed an irregular and thickened basement membrane and significantly reduced nephrocyte filtration function. This phenotype was restored by expressing human reference (wildtype) COL4A5, but not by COL4A5 carrying any of three established pathogenic patient-derived variants. We then screened seven additional patient COL4A5 variants; their ClinVar classification was either likely pathogenic or of uncertain significance. The findings support pathogenicity for four of these variants; the three others were found benign. Thus, demonstrating the effectiveness of this Drosophila in vivo kidney platform in providing the urgently needed variant-level functional validation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。