Functional Recovery of AQP2 Recessive Mutations Through Hetero-Oligomerization with Wild-Type Counterpart

通过与野生型对应物的异源寡聚化实现 AQP2 隐性突变的功能恢复

阅读:8
作者:Abdulah El Tarazi, Yoann Lussier, Sandra Da Cal, Pierre Bissonnette, Daniel G Bichet

Abstract

Aquaporin-2 (AQP2) is a homotetrameric water channel responsible for the final water reuptake in the kidney. Mutations in the protein induce nephrogenic diabetes insipidus (NDI), which challenges the water balance by producing large urinary volumes. Although recessive AQP2 mutations are believed to generate non-functional and monomeric proteins, the literature identifies several mild mutations which suggest the existence of mixed wt/mut tetramers likely to carry function in heterozygotes. Using Xenopus oocytes, we tested this hypothesis and found that mild mutants (V24A, D150E) can associate with wt-AQP2 in mixed heteromers, providing clear functional gain in the process (62 ± 17% and 63 ± 17% increases, respectively), conversely to the strong monomeric R187C mutant which fails to associate with wt-AQP2. In kidney cells, both V24A and D150E display restored targeting while R187C remains in intracellular stores. Using a collection of mutations to expand recovery analyses, we demonstrate that inter-unit contacts are central to this recovery process. These results not only present the ground data for the functional recovery of recessive AQP2 mutants through heteromerization, which prompt to revisit the accepted NDI model, but more importantly describe a general recovery process that could impact on all multimeric systems where recessive mutations are found.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。