A comprehensive benchmark for multiple highly efficient base editors with broad targeting scope

针对多种高效碱基编辑器的综合基准,具有广泛的靶向范围

阅读:10
作者:Xiaofeng Wang, Xiaolong Cheng, Zexu Li, Shixin Ma, Han Zhang, Zhisong Chen, Yingjia Yao, Zihan Li, Chunge Zhong, You Li, Yunhan Zhang, Vipin Menon, Lumen Chao, Wei Li, Teng Fei

Abstract

As the toolbox of base editors (BEs) expands, selecting appropriate BE and guide RNA (gRNA) to achieve optimal editing efficiency and outcome for a given target becomes challenging. Here, we construct a set of 10 adenine and cytosine BEs with high activity and broad targeting scope, and comprehensively evaluate their editing profiles and properties head-to-head with 34,040 BE-gRNA-target combinations using genomically integrated long targets and tiling gRNA strategies. Interestingly, we observe widespread non-canonical protospacer adjacent motifs (PAMs) for these BEs. Using this large-scale benchmark data, we build a deep learning model, named BEEP (Base Editing Efficiency Predictor), for predicting the editing efficiency and outcome of these BEs. Guided by BEEP, we experimentally test and validate the installment of 3,558 disease-associated single nucleotide variants (SNVs) via BEs, including 20.1% of target sites that would be generally considered as "uneditable", due to the lack of canonical PAMs. We further predict candidate BE-gRNA-target combinations for modeling 1,752,651 ClinVar SNVs. We also identify several cancer-associated SNVs that drive the resistance to BRAF inhibitors in melanoma. These efforts benchmark the performance and illuminate the capabilities of multiple highly useful BEs for interrogating functional SNVs. A practical webserver (http://beep.weililab.org/) is freely accessible to guide the selection of optimal BEs and gRNAs for a given target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。