Magnetocrystalline and Surface Anisotropy in CoFe2O4 Nanoparticles

CoFe2O4 纳米粒子的磁晶和表面各向异性

阅读:7
作者:Alexander Omelyanchik, María Salvador, Franco D'Orazio, Valentina Mameli, Carla Cannas, Dino Fiorani, Anna Musinu, Montserrat Rivas, Valeria Rodionova, Gaspare Varvaro, Davide Peddis

Abstract

The effect of the annealing temperature Tann on the magnetic properties of cobalt ferrite nanoparticles embedded in an amorphous silica matrix (CoFe2O4/SiO2), synthesized by a sol-gel auto-combustion method, was investigated by magnetization and AC susceptibility measurements. For samples with 15% w/w nanoparticle concentration, the particle size increases from ~2.5 to ~7 nm, increasing Tann from 700 to 900 °C. The effective magnetic anisotropy constant (Keff) increases with decreasing Tann, due to the increase in the surface contribution. For a 5% w/w sample annealed at 900 °C, Keff is much larger (1.7 × 106 J/m3) than that of the 15% w/w sample (7.5 ×105 J/m3) annealed at 700 °C and showing comparable particle size. This indicates that the effect of the annealing temperature on the anisotropy is not only the control of the particle size but also on the core structure (i.e., cation distribution between the two spinel sublattices and degree of spin canting), strongly affecting the magnetocrystalline anisotropy. The results provide evidence that the magnetic anisotropy comes from a complex balance between core and surface contributions that can be controlled by thermal treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。