A Single Resistance Exercise Session Improves Aortic Endothelial Function in Hypertensive Rats

一次阻力训练可改善高血压大鼠的主动脉内皮功能

阅读:8
作者:Thaís de Oliveira Faria, Jhuli Keli Angeli, Luiz Guilherme Marchesi Mello, Gustavo Costa Pinto, Ivanita Stefanon, Dalton Valentim Vassallo, Juliana Hott de Fúcio Lizardo

Background

Physical exercise is an important tool for the improvement of endothelial function.

Conclusion

A single resistance exercise session improves endothelial function in hypertensive rats. This response seems to be mediated by increased NO production through eNOS activation.

Methods

Ten minutes after exercise, the aorta was removed to evaluate the expression of endothelial nitric oxide synthase (eNOS), phosphorylated endothelial nitric oxide synthase (p-eNOS1177) and inducible nitric oxide synthase (iNOS) and to generate concentration-response curves to acetylcholine (ACh) and to phenylephrine (PHE). The PHE protocol was also performed with damaged endothelium and before and after NG-nitro-L-arginine methyl ester (L-NAME) and indomethacin administration. The maximal response (Emax) and the sensitivity (EC50) to these drugs were evaluated.

Objective

To assess the effects of acute dynamic resistance exercise on the endothelial function of spontaneously hypertensive rats (SHR).

Results

ACh-induced relaxation increased in the aortic rings of exercised (Ex) rats (Emax= -80 ± 4.6%, p < 0.05) when compared to those of controls (Ct) (Emax = -50 ± 6.8%). The Emax to PHE was decreased following exercise conditions (95 ± 7.9%, p < 0.05) when compared to control conditions (120 ± 4.2%). This response was abolished after L-NAME administration or endothelial damage. In the presence of indomethacin, the aortic rings' reactivity to PHE was decreased in both groups (EC50= Ex -5.9 ± 0.14 vs. Ct -6.6 ± 0.33 log µM, p < 0.05 / Emax = Ex 9.5 ± 2.9 vs. Ct 17 ± 6.2%, p < 0.05). Exercise did not alter the expression of eNOS and iNOS, but increased the level of p-eNOS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。