PTD-FNK Alleviated LPS-Induced Oxidative Stress of Boar Testicular Sertoli Cells via Keap1-Nrf2 Pathway

PTD-FNK 通过 Keap1-Nrf2 通路减轻 LPS 诱导的猪睾丸塞托利细胞氧化应激

阅读:7
作者:Weixia Ji, Qiuyan Huang, Qiqi Ma, Xingxing Song, Xin Zhang, Xun Li, Xiaoye Wang, Sutian Wang, Yanling Wang, Zhengzhong Xiao, Chuanhuo Hu

Abstract

PTD-FNK, a synthetic anti-apoptotic protein, has been shown to potently alleviate cellular injuries. However, the effects of PTD-FNK on oxidative defense in boar testicular Sertoli cells (SCs) against oxidative injury has not been explored. In this study, we show that exposure of SCs to 100 mg/L lipopolysaccharide (LPS) for 12 h leads to decreased survival rate, superoxide dismutase (SOD) activity, and increased malondialdehyde (MDA). Treatment with 0.01 nmol/L PTD-FNK for 4 h significantly enhanced the activity of SOD, catalase (CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in SCs. Concurrently, PTD-FNK treatment effectively reduced the production of reactive oxygen species (ROS) and the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in SCs. Moreover, using His pull-down and LC-MS techniques, we identified PTD-FNK-interacting proteins and confirmed that this protective effect may be mediated by the regulation of the Keap1-Nrf2 signaling pathway by PTD-FNK. Therefore, PTD-FNK alleviates LPS-induced oxidative stress via the Keap1/Nrf2 pathway, providing novel insights for the development of therapeutic agents targeting testicular oxidative damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。