Genes and Proteins Involved in qnrS1 Induction

参与 qnrS1 诱导的基因和蛋白质

阅读:6
作者:Rubén Monárrez, Yin Wang, Yingmei Fu, Chun-Hsing Liao, Ryo Okumura, Molly R Braun, George A Jacoby, David C Hooper

Abstract

Expression of the quinolone resistance gene qnrS1 is increased by quinolones, but unlike induction of some other qnr genes, the bacterial SOS system is not involved and no lexA box is found upstream. Nonetheless, at least 205 bp of upstream sequence is required for induction to take place. An upstream sequence bound to beads trapped potential binding proteins from cell extracts that were identified by mass spectrometry as Dps, Fis, Ihf, Lrp, CysB, and YjhU. To further elucidate their role, a reporter plasmid linking the qnrS1 upstream sequence to lacZ was introduced into cells of the Keio collection with single-gene deletions and screened for lacZ expression. Mutants in ihfA and ihfB had decreased lacZ induction, while induction in a cysB mutant was increased and dps, fis, lrp, yjhU, and other mutants showed no change. The essential upstream sequence contains potential binding sites for Ihf and DnaA. A dnaA deletion could not be tested because it provides essential functions in cell replication; however, increased dnaA expression decreased qnrS1 induction while decreased dnaA expression enhanced it, implying a role for DnaA as a repressor. In a mobility shift assay, purified IhfA, IhfB, and DnaA proteins (but not CysB) were shown to bind to the upstream segment. Induction decreased in a gyrA quinolone-resistant mutant, indicating that GyrA also has a role. Thus, quinolones acting through proteins DnaA, GyrA, IhfA, and IhfB regulate expression of qnrS1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。