Mechanistic insights into super-enhancer-related genes as prognostic signatures in colon cancer

对超级增强子相关基因作为结肠癌预后特征的机制洞察

阅读:5
作者:Yini Tang, Shuliu Sang, Shuang Gao, Weina Xu, Hailun Zhou, Xiaoting Xia

Background

Colon cancer (CC) is the most frequently occurring digestive system malignancy and is associated with a dismal prognosis. While super-enhancer (SE) genes have been identified as prognostic markers in several cancers, their potential as practical prognostic markers for CC patients remains unexplored.

Conclusion

These findings reveal that the SERGs model could effectively predict the prognosis of CC.

Methods

We obtained super-enhancer-related genes (SERGs) from the Human Super-Enhancer Database (SEdb). Transcriptome and relevant clinical data for colon cancer (CC) were sourced from the Gene Expression Omnibus (GEO) database. Subsequently, we identified up-regulated SERGs by the Weighted Gene Co-expression Network Analysis (WGCNA). Prognostic signatures were constructed via univariate and multivariate Cox regression analysis. We then delved into the mechanisms of these predictive genes by examining immune infiltration. We also assessed differential sensitivities to chemotherapeutic drugs between high- and low-SERGs risk patients. The critical gene was further validated using external datasets and finally confirmed by qRT PCR.

Results

We established a ten-gene risk score prognostic model (S100A11, LZTS2, CYP2S1, ZNF552, PSMG1, GJC1, NXN, and DCBLD2), which can effectively predict patient survival rates. This model demonstrated effective prediction capabilities in survival rates at 1, 3, and 5 years and was successfully validated using external datasets. Furthermore, we detected significant differences in immune cell infiltration between high- and low-SERGs risk groups. Notably, high-risk patients exhibited heightened sensitivity to four chemotherapeutic agents, suggesting potential benefits for precision therapy in CC patients. Finally, qRT-PCR validation revealed a significant upregulation of LZTS2 mRNA expression in CC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。