In vitro models to detect in vivo bile acid changes induced by antibiotics

检测抗生素引起的体内胆汁酸变化的体外模型

阅读:6
作者:Nina Zhang, Jingxuan Wang, Wouter Bakker, Weijia Zheng, Marta Baccaro, Aishwarya Murali, Bennard van Ravenzwaay, Ivonne M C M Rietjens

Abstract

Bile acid homeostasis plays an important role in many biological activities through the bile-liver-gut axis. In this study, two in vitro models were applied to further elucidate the mode of action underlying reported in vivo bile acid changes induced by antibiotics (colistin sulfate, tobramycin, meropenem trihydrate, and doripenem hydrate). 16S rRNA analysis of rat fecal samples anaerobically incubated with these antibiotics showed that especially tobramycin induced changes in the gut microbiota. Furthermore, tobramycin was shown to inhibit the microbial deconjugation of taurocholic acid (TCA) and the transport of TCA over an in vitro Caco-2 cell layer used as a model to mimic intestinal bile acid reuptake. The effects induced by the antibiotics in the in vitro model systems provide novel and complementary insight explaining the effects of the antibiotics on microbiota and fecal bile acid levels upon 28-day in vivo treatment of rats. In particular, our results provide insight in the mode(s) of action underlying the increased levels of TCA in the feces upon tobramycin exposure. Altogether, the results of the present study provide a proof-of-principle on how in vitro models can be used to elucidate in vivo effects on bile acid homeostasis, and to obtain insight in the mode(s) of action underlying the effect of an antibiotic, in this case tobramycin, on bile acid homeostasis via effects on intestinal bile acid metabolism and reuptake.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。