Suitability evaluation of toehold switch and EXPAR for cell-free MicroRNA biosensor development

立足点开关和 EXPAR 对无细胞 MicroRNA 生物传感器开发的适用性评估

阅读:7
作者:Caroline E Copeland, Yong-Chan Kwon

Abstract

The development of a robust and cost-effective sensing platform for microRNA (miRNA) is of paramount importance in detecting and monitoring various diseases. Current miRNA detection methods are marred by low accuracy, high cost, and instability. The toehold switch riboregulator has shown promising results in detecting viral RNAs integrated with the freeze-dried cell-free system (CFS). This study aimed to leverage the toehold switch technology and portability to detect miRNA in the CFS and to incorporate the exponential amplification reaction (EXPAR) to bring the detection to clinically relevant levels. We assessed various EXPAR DNA templates under different conditions to enhance the accuracy of the sensing platform. Furthermore, different structures of toehold switches were tested with either high-concentration synthetic miRNA or EXPAR product to assess sensitivity. Herein, we elucidated the mechanisms of the toehold switch and EXPAR, presented the findings of these optimizations, and discussed the potential benefits and drawbacks of their combined use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。