Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li-S Batteries

深入了解锂硫电池硫化聚合物电极的赝电容行为

阅读:4
作者:Nawraj Sapkota, Shailendra Chiluwal, Prakash Parajuli, Alan Rowland, Ramakrishna Podila

Abstract

Practical applications of sulfurized polymer (SP) materials in Li-S batteries (LSBs) are often written off due to their low S content (≈35 wt%). Unlike conventional S8 /C composite cathodes, SP materials are shown to function as pseudocapacitors with an active carbon backbone using a comprehensive array of tools including in situ Raman and electrochemical impedance spectroscopy. Critical metric analysis of LSBs containing SP materials with an active carbon skeleton shows that SP cathodes with 35 wt% S are suitable for 350 Wh kg-1 target at the cell level if S loading >5 mg cm-2 , electrolyte-to-sulfur ratio <2 µL mg-1 , and negative-to-positive ratio <5 can be achieved. Although 3D current collectors can enable such high loadings, they often add excess mass decreasing the total capacity. An "active" carbon nanotube bucky sandwich current collector developed here offsets its excess weight by contributing to the electric double layer capacity. SP cathodes (35 wt% S) with ≈5.5 mg cm-2 of S loading (≈15.8 mg cm-2 of SP loading) yield a sulfur-level gravimetric capacity ≈1360 mAh gs -1 (≈690 mAh gs -1 ), electrode level capacity 200 mAh gelectrode -1 (100 mAh gelectrode -1 ), and areal capacity ≈7.8 mAh cm-2 (≈4.0 mAh cm-2 ) at 0.1C (1C) rate for ≈100 cycles at E/S ratio = 7 µL mg-1 .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。