Human fetal intestinal epithelial cells metabolize and incorporate branched chain fatty acids in a structure specific manner

人类胎儿肠上皮细胞以结构特定的方式代谢和吸收支链脂肪酸

阅读:5
作者:Lei Liu, Zhen Wang, Hui Gyu Park, Chuang Xu, Peter Lawrence, Xueli Su, Vasuki Wijendran, W Allan Walker, Kumar S D Kothapalli, J Thomas Brenna

Background

Branched chain fatty acids (BCFA) are constituents of gastrointestinal (GI) tract in healthy newborn human infants, reduce the incidence of necrotizing enterocolitis (NEC) in a neonatal rat model, and are incorporated into small intestine cellular lipids in vivo. We hypothesize that BCFA are taken up, metabolized and incorporated into human fetal cells in vitro.

Conclusions

Nontransformed human fetal intestinal epithelial cells incorporate high levels of BCFA when they are available and metabolize them in a structure specific manner. These findings imply that specific pathways for handling BCFA are present in the lumen-facing cells of the human fetal GI tract that is exposed to vernix-derived BCFA in late gestation.

Methods

Human H4 cells, a fetal non-transformed primary small intestine cell line, were incubated with albumin-bound non-esterified anteiso-17:0, iso-16:0, iso-18:0 and/or iso-20:0, and FA profiles in lipid fractions were analyzed.

Results

All BCFA were readily incorporated as major constituents of cellular lipids. Anteiso-17:0 was preferentially taken up, and was most effective among BCFA tested in displacing normal (n-) FA. The iso BCFA were preferred in reverse order of chain length, with iso-20:0 appearing at lowest level. BCFA incorporation in phospholipids (PL) followed the same order of preference, accumulating 42% of FA as BCFA with no overt morphological signs of cell death. Though cholesterol esters (CE) are at low cellular concentration among lipid classes examined, CE had the greatest affinity for BCFA, accumulating 65% of FA as BCFA. BCFA most effectively displaced lower saturated FA. Iso-16:0, iso-18:0 and anteiso-17:0 were both elongated and chain shortened by ±C2. Iso-20:0 was chain shortened to iso-18:0 and iso-16:0 but not elongated. Conclusions: Nontransformed human fetal intestinal epithelial cells incorporate high levels of BCFA when they are available and metabolize them in a structure specific manner. These findings imply that specific pathways for handling BCFA are present in the lumen-facing cells of the human fetal GI tract that is exposed to vernix-derived BCFA in late gestation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。