The primary cilium as a biomarker in the hypoxic adaptation of bone marrow-derived mesenchymal stromal cells: a role for the secreted frizzled-related proteins

初级纤毛作为骨髓间充质基质细胞缺氧适应的生物标志物:分泌的卷曲相关蛋白的作用

阅读:12
作者:Sébastien Proulx-Bonneau, Borhane Annabi

Abstract

A pivotal role in guiding mesenchymal stem cell (MSC) differentiation has recently been attributed to the primary cilium. This solitary, non-motile microtubule-based organelle emerging from the cell surface acts as a sensorial membrane structure reflecting developmental and adaptive processes associated with pathologies including human cystic kidney disease, skeletal malformations, obesity and cancer. Given that the intrinsic hypoxic adaptation of MSC remains poorly understood within ischemic tissues or hypoxic tumours, we questioned whether the hypoxia inducible factor-1α (HIF-1α) might be a downstream effector regulating cilium maintenance. We show that murine bone marrow-derived MSC cultured under hypoxic conditions (1.2% O(2)) lose their primary cilia in a time-dependent manner. Gene silencing of HIF-1α prevented cilia loss in hypoxic cultures, and generation of MSC expressing a constitutively active HIF-1α (MSC-HIF) was found to decrease primary cilium formation. A Wnt pathway-related gene expression array was also performed on MSC-HIF and indicated that the secreted Frizzled-related proteins (sFRP)-1, -3 and -4 were down-regulated, while sFRP-2 was up-regulated. Overexpression of recombinant sFRP-2 or gene silencing of sFRP-1, -3 and -4 in MSC led to primary cilium disruption. These results indicate a molecular signalling mechanism for the hypoxic disruption of the primary cilium in MSC involving an HIF-1α/sFRP axis. This mechanism contributes to our understanding of the adaptive processes possibly involved in the oncogenic transformation and tumour-supporting potential of MSC. Our current observations also open up the possibility for the primary cilia to serve as a biomarker in MSC adaptation to low oxygen tension within (patho)physiological microenvironments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。