Acute blockade of endogenous melatonin by Luzindole, with or without peripheral LPS injection, induces jejunal inflammation and morphological alterations in Swiss mice

无论是否注射外周 LPS,Luzindole 急性阻断内源性褪黑激素都会诱发瑞士小鼠的空肠炎症和形态改变

阅读:6
作者:R S Matos, R B Oriá, P F C Bruin, D V Pinto, A F S C Viana, F A Santos, A S G Duarte, V M S Bruin

Abstract

This study investigated the acute blockade of endogenous melatonin (MLT) using Luzindole with or without systemic lipopolysaccharide (LPS) challenge and evaluated changes in inflammatory and oxidative stress markers in the mouse jejunum. Luzindole is an MT1/MT2 MLT receptor antagonist. Both receptors occur in the small intestine. Swiss mice were treated with either saline (0.35 mg/kg, ip), Luzindole (0.35 mg/kg, ip), LPS (1.25 mg/kg, ip), or Luzindole+LPS (0.35 and 1.25 mg/kg, ip, respectively). Jejunum samples were evaluated regarding intestinal morphometry, histopathological crypt scoring, and PAS-positive villus goblet cell counting. Inflammatory Iba-1, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, nuclear factor (NF)-kB, myeloperoxidase (MPO), and oxidative stress (NP-SHs, catalase, MDA, nitrate/nitrite) markers were assessed. Mice treated with Luzindole, LPS, and Luzindole+LPS showed villus height shortening. Crypt damage was worse in the LPS group. Luzindole, LPS, and Luzindole+LPS reduced the PAS-goblet cell labeling and increased Iba-1-immunolabelled cells compared to the saline group. Immunoblotting for IL-1β, TNF-α, and NF-kB was greater in the Luzindole group. The LPS-challenged group showed higher MPO activity than the saline and Luzindole groups. Catalase was reduced in the Luzindole and Luzindole+LPS groups compared to saline. The Luzindole group showed an increase in NP-SHs, an effect related to compensatory GSH activity. The acute blockade of endogenous MLT with Luzindole induced early changes in inflammatory markers with altered intestinal morphology. The other non-detectable deleterious effects of Luzindole may be balanced by the unopposed direct action of MLT in immune cells bypassing the MT1/MT2 receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。