Methods
The study was performed on 56 BALB/c mice divided into the following groups: "control" (n=19), "scaffold" (n=19), and "LSE" (n=18).During the experiment, the histological, immunohistochemical methods and raster scanning optoacoustic mesoscopy (RSOM) technique were employed to compare the dynamics of regeneration of ischemic non-healing wound using LSE transplantation, collagen-hyaluronic film as a cell scaffold, and a non-treated wound.
Results
Histology and immunohistochemistry have been found to be suitable to assess the effectiveness of treating ischemic non-healing wounds during preclinical investigations. The effect of LSE transplantation on infiltration of the wound bed with inflammatory cells, the formation of tissue in the wound bed zone, tissue condition at the wound margins, and angiogenesis has been studied. In addition, a new smoothing coefficient, i.e. the ratio of the thickness of the tissue-remodeling zone to the thickness of the dermis of the wound margins, has been proposed in the study. This coefficient makes it possible to assess the degree of filling the wound bed with the developing tissue. Its high value in the LSE group means that BCP transplantation influences the granulation tissue growth, prevents mechanical stress in the wound preventing thereby cosmetic defects.Exploration of the regenerative processes has shown that the proposed model of the ischemic non-healing wound is suitable for preclinical studies of BCP.
