Synergistic integration of hydrothermal pretreatment and co-digestion for enhanced biogas production from empty fruit bunches in high solids anaerobic digestion

水热预处理与共消化的协同集成,增强高固体厌氧消化中空果串的沼气产量

阅读:5
作者:Sukonlarat Chanthong, Prawit Kongjan, Rattana Jariyaboon, Sompong O-Thong

Abstract

This study investigates the co-digestion of hydrothermally pretreated empty fruit bunches (EFB) at 190 °C for 5 min (HTP190-EFB) with decanter cake (DC) to improve biogas production in high solid anaerobic digestion (HSAD). The HTP190-EFB exhibited a 67.98 % reduction in total solids, along with the production of 0.89 g/L of sugar, 2.39 g/L of VFA, and 0.56 g/L of furfural in the liquid fraction. Co-digestion of HTP190-EFB with DC at mixing ratios of 5, 10, and 15 %w/v demonstrated improved methane yields and process stability compared to mono-digestion of HTP190-EFB. The highest methane yield of 372.69 mL CH4/g-VS was achieved in the co-digestion with 5 %w/v DC, representing a 15 % increase compared to digestion of HTP190-EFB (324.30 mL CH4/g-VS) alone. Synergistic effects were quantified, with the highest synergistic methane yield of 77.65 mL CH4/g-VS observed in the co-digestion with 5 %w/v DC. Microbial community analysis revealed that co-digestion of hydrothermally pretreated EFB with decanter cake promoted the growth of Clostridium sp., Lactobacillus sp., Fibrobacter sp., Methanoculleus sp., and Methanosarcina sp., contributing to enhanced biogas production compared to mono-digestion of pretreated EFB. Energy balance analysis revealed that co-digestion of HTP190-EFB with DC resulted in a total net energy of 599.95 kW, 52 % higher than mono-digestion of HTP190-EFB (394.62 kW). Economic analysis showed a shorter return on investment for the co-digestion system (0.86 years) compared to the mono-digestion of HTP190-EFB (1.02 years) and raw EFB (2.69 years). The co-digestion of HTP190-EFB with 5 %w/v DC offers a promising approach to optimize methane yield, process stability, and economic feasibility, supporting the palm oil industry for producing renewable energy and sustainable waste management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。