Chronic dietary exposure to a glyphosate-based herbicide alters ovarian functions in young female broilers

长期饮食接触草甘膦除草剂会改变幼龄雌性肉鸡的卵巢功能

阅读:6
作者:Freville Mathias, Estienne Anthony, Ramé Christelle, Lefort Gaëlle, Piégu Benoît, Chahnamian Marine, Froment Pascal, Dupont Joëlle

Abstract

Glyphosate (GLY)-based herbicide (GBH) formulations are widely used pesticides in agriculture. The European Union recently decided to extend the use of GLY in Europe until 2034. Previously, we showed that chronic dietary GBH exposure in adult hens resulted in a reversible increase in early mortality in chicken embryos. In this present study, we investigated the GBH effects on metabolism and ovarian functions by using a transcriptomic approach in vivo in young female broilers and in vitro in ovarian explant cultures. We exposed 11-day-old female broilers to 13 mg GLY equivalent/kg body weight/d (GBH13, n = 20), 34 mg GLY equivalent/kg body weight/d (GBH34, n = 20), or a standard diet (control [CT], n = 20) for 25 d. These 2 GBH concentrations correspond to approximatively one-eighth and one-third of the no observed adverse effect level (NOAEL) as defined by European Food Safety Authority in birds. During this period, we evaluated body weight, fattening, food intake, and the weight of organs (including the ovaries). Chronic dietary GBH exposure dose dependently reduced food intake, body weight, and fattening, but increased oxidative stress and relative ovary weight. We analyzed the ovarian gene expression profile in CT, GBH13, and GBH34 broilers with RNA sequencing and showed that differentially expressed genes are mainly enriched in pathways related to cholesterol metabolism, steroidogenesis, and RNA processing. With quantitative polymerase chain reaction and western blotting, we confirmed that GBH decreased ovarian STAR and CYP19A1 messenger RNA and protein expression, respectively. Furthermore, we confirmed that GBH altered steroid production in ovarian explants. We have identified potential regulatory networks associated with GBH. These data provide valuable support for understanding the ovarian transcriptional regulatory mechanism of GBH in growing broilers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。