Long non-coding RNA CNALPTC1 promotes gastric cancer progression by regulating the miR-6788-5p/PAK1 pathway

长链非编码RNA CNALPTC1通过调控miR-6788-5p/PAK1通路促进胃癌进展

阅读:5
作者:Fang Li, Bibo Tan, Zihao Chen, Qun Zhao, Shi Li, Pingan Ding, Chang Liu, Xiaoxiao Wang, Xiaoya Li, Yong Li

Background

Gastric cancer (GC) is a globally prevalent gastrointestinal tumor. Long non-coding RNAs (lncRNAs) are a new type of transcript which has become a hotspot of current research; however, the function of most lncRNAs in the advancement of GC is still not clear. The focus of this research was to elucidate the role and expression of lncRNA CNALPTC1 in GC.

Conclusions

Our research revealed that the CNALPTC1 promotes GC development by negatively regulating the miR-6788-5p/PAK1 pathway. GC therapy may be improved by conducting targeted studies of the CNALPTC1/miR-6788-5p/PAK1 axis.

Methods

In GC cells and tissues, the detection of CNALPTC1 expression was carried out using quantitative real-time polymerase chain reaction (qRT-PCR), and the link between its expression and clinicopathological features was investigated. The impacts of inhibition and upregulation of CNALPTC1 on the physiological behavior of GC cells were observed. Furthermore, through bioinformatics analysis and prediction of microRNA (miRNA) targeted to CNALPTC1 and target genes interacting with miRNA, the effects on invasion, proliferation, and migration of GC cells were investigated.

Results

The elevated expression level of CNALPTC1 was observed in GC tissues and cell lines. The in vitro analysis indicated that gene silencing of CNALPTC1 resulted in inhibition, whereas upregulation of CNALPTC1 resulted in the promotion of invasion, proliferation, and migration of GC cells, respectively. In addition, we observed that CNALPTC1 functions as a molecular sponge for miR-6788-5p, and the level of expression of CNALPTC1 exhibited a negative correlation with miR-6788-5p. Moreover, it was revealed that the miR-6788-5p's direct target was PAK1, which could reverse the inhibitory function of miR-6788-5p. Conclusions: Our research revealed that the CNALPTC1 promotes GC development by negatively regulating the miR-6788-5p/PAK1 pathway. GC therapy may be improved by conducting targeted studies of the CNALPTC1/miR-6788-5p/PAK1 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。