Wave Dispersion Behaviors of Multi-Scale CNT/Glass Fiber/Polymer Nanocomposite Laminated Plates

多尺度碳纳米管/玻璃纤维/聚合物纳米复合层合板的波色散行为

阅读:9
作者:Farzad Ebrahimi, Alireza Enferadi, Ali Dabbagh

Abstract

In this paper, wave propagation in multi-scale hybrid glass fiber (GF)/carbon nanotube (CNT)/polymer nanocomposite plates is studied for the first time by means of refined higher-order plate theory. The hybrid nanocomposite consists of CNTs and glass fibers (GF) as reinforcing components distributed within a polymeric matrix. A hierarchical micromechanical approach is used to predict the effective mechanical properties of the hybrid nanocomposite, including the three-dimensional (3D) Mori-Tanaka method and the rule of mixture. Moreover, a refined-type higher-order shear deformation theory (HSDT) is implemented to take into account the influence of the shear deformation on the motion equations of the system. Then, the governing equations are achieved on the basis of the energy-based Hamilton's principle. Finally, the derived equations will be solved analytically for the purpose of extracting the natural frequency of the continuous system. A set of numerical examples are provided to cover the effects of various parameters on the wave dispersion characteristics of the plate. It can be declared that the hybrid nanocomposite system can achieve higher wave frequencies compared with other types of composite structures. Additionally, it is found that the selection of the lay-ups and length-to-diameter ratio plays a significant role in the determination of the sandwich plate's acoustic response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。