Potential Toxicity of Polymyxins in Human Lung Epithelial Cells

多粘菌素对人肺上皮细胞的潜在毒性

阅读:6
作者:Maizbha U Ahmed, Tony Velkov, Yu-Wei Lin, Bo Yun, Cameron J Nowell, Fanfan Zhou, Qi Tony Zhou, Kim Chan, Mohammad A K Azad, Jian Li

Abstract

Inhaled polymyxins are of considerable utility in achieving optimal exposure in the respiratory tract for the treatment of lung infections caused by multidrug-resistant Gram-negative pathogens. Current inhaled polymyxin therapy is empirical, and often large doses are used that may lead to potential pulmonary adverse effects. This study aimed to investigate the effect of polymyxins on human lung epithelial (A549) cells. The viability of A549 cells was examined after treatment with polymyxins by flow cytometry. Activation of caspases 3, 8, and 9, expression of Fas ligand (FasL), loss of mitochondrial membrane potential, and mitochondrial oxidative stress induced by polymyxin B were evaluated. The concentration of polymyxin B required to induce 50% of maximal cell death was 1.74 mM (95% confidence interval, 1.60 to 1.90 mM). Colistin was at least 2-fold less toxic than polymyxin B, while colistimethate was nontoxic. With 2.0 mM polymyxin B, 30.6% ± 11.5% (mean ± standard deviation) of the cells were apoptotic at 8 h and this increased to 71.3% ± 3.72% at 24 h. Concentration- and time-dependent activation of caspases 3, 8, and 9 was evident, while the activation of caspase 9 was more dramatic. Furthermore, polymyxin B caused concentration- and time-dependent FasL expression, production of mitochondrial reactive oxygen species, and changes in mitochondrial membrane potential. This is the first study to demonstrate that both extrinsic death receptor and intrinsic mitochondrial pathways are involved in polymyxin-induced toxicity in A549 cells. This knowledge base is critical for the development of novel strategies for the safe and effective inhalation therapy of polymyxins against Gram-negative "superbugs."

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。