On the influence of the source of porcine colostrum in the development of early immune ontogeny in piglets

猪初乳来源对仔猪早期免疫发育的影响

阅读:6
作者:Shaiana Salete Maciag, Franciana Volpato Bellaver, Gabrielly Bombassaro, Vanessa Haach, Marcos Antônio Zanella Morés, Lana Flávia Baron, Arlei Coldebella, Ana Paula Bastos

Abstract

The effects on the ontogeny of serum cytokines and immune cells caused by feeding suckling piglets with sow/gilt colostrum and milk replacer was assessed in the present study. After farrowing, the piglets born were randomized into six groups: GG and SS (n = 10/group): piglets were kept with their dam; GS (n = 10): piglets were changed from gilts to sows; SG (n = 10): piglets were changed from sows to gilts; GMR (n = 6) and SMR (n = 8): piglets from either gilts or sows were isolated from the dams and were bottle-fed ad libitum with commercial formula milk replacer. The piglets remained in the groups during the first 24 h of life and were later returned to their respective mothers. Serum immunoglobulin concentration and lymphocyte proliferation from the blood, spleen, thymus, and mesenteric lymph node of the piglets were assessed at 24 h and at 28 days of age. Serum cytokine concentrations were measured through a cytokine multiplex assay at 24 h. Overall, piglets suckling on sows (SS and GS) had a higher concentration of serum immunoglobulin at 24 h, which was also associated with a rise in plasma cytokine concentration and greater ability of B and T cells from lymphatic organs and blood mononuclear cells to respond to mitogens. We suggest a bias towards Th1-, Th2-, and Th17-cell polarizing and cytokines during the suckling period, which may be influenced by maternal immunological factors in the colostrum, such as dam parity. All findings suggest sow parity having a possible role, which may contribute to exerting a modulating action on immune response development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。