In Vitro Degradability, Microstructural Evaluation, and Biocompatibility of Zn-Ti-Cu-Ca-P Alloy

Zn-Ti-Cu-Ca-P合金的体外降解性、微观结构评价及生物相容性

阅读:8
作者:Navaneethakrishnan Gopal, Parameswaran Palaniyandi, Palanisamy Ramasamy, Hitesh Panchal, Ahmed Mohamed Mahmoud Ibrahim, Mohammad S Alsoufi, Ammar H Elsheikh

Abstract

According to the modern era, zinc is one of the best replacements for human bio-implants due to its acceptable degradation, nominal degradable rate, and biocompatibility. However, alloying zinc with other nutrient metals is mandatory to improve the mechanical properties. In this research, Zn-4Ti-4Cu was alloyed with calcium and phosphorous through a powder metallurgical process to make guided bone regeneration (GBR). First, the sintering temperature of the alloy was found with the usage of thermogravimetric analysis (TGA). Tensile and compression tests showed the suitability of the alloy in strength. The microstructural characteristics were provided with EDS and SEM. The different phases of the alloy were detected with X-ray diffraction (XRD). We can clearly depict the precipitates formed and the strengthening mechanism due to titanium addition. An electrochemical corrosion (ECM) test was carried out with simulated body fluid (Hank's solution) as the electrolyte. Cytotoxicity, biocompatibility, mechanical properties, and corrosion resistance properties were studied and discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。