1α,25-Dihydroxyvitamin D3 accelerates skin wound re-epithelialization by promoting epidermal stem cell proliferation and differentiation through PI3K activation: an in vitro and in vivo study

1α,25-二羟基维生素 D3 通过 PI3K 激活促进表皮干细胞增殖和分化,加速皮肤伤口上皮化:一项体外和体内研究

阅读:15
作者:Rongshuai Yan, Zhihui Liu, Song Wang, Dongli Fan

Abstract

1α,25-Dihydroxyvitamin D3 (VD3), the active form of vitamin D, plays a crucial role in wound healing. In this study, we aimed to investigate the effect of VD3 on the proliferation and differentiation of epidermal stem cells (EpSCs) and monitor its impact on re-epithelialization. We established a murine full-thickness skin defect model and applied four doses of VD3 (0, 5, 50, and 250 ng/mouse/day) to the wounds topically for three days. Immunostaining and flow cytometry confirmed the effect of VD3 on the proliferation and differentiation of EpSCs in wounds. This effect of VD3 (0, 1, 10, and 50 nM) on EpSCs and its possible mechanism were further confirmed in vitro by CCK8, westen blot, immunostaining, and flow cytometry. We found that on day five post-wounding, the means±SD length of the neo-epidermis was 195.88±11.57, 231.84±16.45, 385.80±17.50, and 268.00±8.22 μm in the control, 5, 50, and 250 ng groups, respectively, with a significant difference from the control (all P<0.05). Immunostaining and flow cytometry showed that VD3 improved the proliferation and differentiation of K15+ EpSC (vs control, all P<0.05), K14+ epidermal progenitor cells (vs control, all P<0.05), and K10+ epidermal terminal cells (vs control, all P<0.05) in vivo and in vitro. The PI3K signaling pathway appeared to underlie this response because significant inhibition of the response was found when inhibitors were used to inhibit PI3K. Our study demonstrated that VD3 is a potent promoter of cutaneous wound healing by stimulating EpSC proliferation and differentiation through PI3K activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。